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1. Research topic

In an isolated environment, we study the relation between a certain type of parasites and their host
and how these evolve with time t (continuous or discrete). In our model, parasites deposit eggs on
their hosts and when the eggs hatch, the host dies. Denote by H and P the number of hosts and
parasites respectively (these can be modelled as a function of t ). At each step (unit time), the number
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of eggs deposited depend on the probability that a parasite and a host meet. One can assume that
this probability is proportional to the product H ×P of the populations.

We are given fixed values b and d - the birth and death rate of hosts when no parasites are present.
Moreover, we let dP be the death rate of the parasites.

Run simulations for given values of b, d and dp and try to determine what happens with the
populations H and P in time.

2. Experimental approach

For the experiment, 3 identical but individual hosts were studied in a laboratory of the Agricultural
Sciences and Veterinary Medicine University in Cluj-Napoca. The hosts were 3 Petri vessels, and the
310 parasite eggs implanted/inserted in them were part of the parasitic species named Strongylus
equinus. The evolution of the eggs was studied for ten days.

a) stage 1 b) stage 2 c) stage 3

Figure 1: Different stages of evolution as observed through microscope

At the beginning, all the eggs were in the first stage (see Figure 1 a)), during which the parasite cells
started forming. In three days, the number of eggs decreased by 122 (40%). Subsequent to this, the
188 remaining eggs reached the second stage (Figure 1 b)). The larvae grew inside the egg, developing
parasite characteristics. In the next week (seven days), the number of parasitic cells reduced again,
this time by 30 (15%). Therefore, only 158 ova attained the third stage (Figure 1 c)), in the course of
which the eggs hatched.

Supposing that the host is a living animal, after the third stage (prior explained) the health condi-
tion of the being would aggravate. However, the presence of this type of parasites could not cause the
death of the animal.

The formula showing the parasite population depending on time, that was deduced from the data,
is

P (t ) = k(e−dp ·t + c)

where P (t ) is the parasite population at time t , k and c are constants, e−dp = 0.8 and dp = − ln0.8 is
the parasite death rate (1).

Obviously, this method is a very modified version of the problem, since there is a constant number
of hosts: 3, coefficients b and d being zero. However, it provided us some information about the
practical utility of the problem.
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3. Analytical approach

3.1. Evolution of hosts

3.1.1 In the absence of parasites

When no parasites are present, the hosts population is influenced only by the b and d parameters,
the natural birth and death rate (2). Because such rates show the number of newly born or dead indi-
viduals with respect to the current population it is straightforward to say that the difference between
two populations within a certain (very short) time interval dt (that is, the derivative of the hosts pop-
ulation) equals the difference between the two rates times the current population

dH

dt
= (b −d)H (1)

b has the (+) sign because it contributes to the increase in population, while d has the (−) sign be-
cause it contributes to the decrease in population; b and d are both positive constants.

Rearranging equation (1)
dH

H
= (b −d)dt (2)

Integrating equation (2) from time 0 to t we obtain∫ H

H0

dH

H
=

∫ t

0
(b −d)dt

We therefore obtain the population size at time t when no parasites are present

ln H − ln H0 = (b −d)t ⇐⇒ ln
H

H0
= (b −d)t ⇐⇒ H

H0
= e(b−d)t

and the final form
H(t ) = H0 e(b−d)t

where H0 is constant and represents the initial population size and e is Euler’s number.
Figure 2 shows different curves that the hosts population can follow depending on the relation-

ship between the two parameters b and d .

3.1.2 In the presence of parasites

Since now parasites are present, a new term will appear in the expression of the derivative of the
population of hosts. This term shows the number of hosts infested by parasites. As of the hypothesis,
the number of eggs is proportional to the product H ×P . Therefore, the number of eggs layed over
that period of time is r HP , where r is a constant. Since multiple eggs can be layed on the same host,
and that host has to be counted only once, another constant has to be multiplied with the expression
above, a constant that shows the average number of eggs/host. The final form of the new term, after
combining the two constants is kHP .

We can hereby write the expression of the derivative of the hosts population size as

dH

dt
= (b −d)H −kHP (3)

The new term has been introduced with sign (−) because it contributes to the decrease of the
population size.
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H0

t

H(t )

b > d
b = d
b < d

Figure 2: Evolution of hosts in the absence of parasites

3.2. Evolution of parasites

3.2.1 In the absence of hosts

When no hosts are present, the parasites only have a natural death rate dP . Similarly as for the hosts,
we can now write for parasites the differential equation that shows how their population evolves in
time in the absence of hosts

dP

dt
=−dP P (4)

Solving equation (4) similarly as for the hosts, yields the solution

P (t ) = P0 e−dP t (5)

Figure 3 shows the evolution of the parasite population when no hosts are present. As we ex-
pected, the population always decreases asymptotically to 0 in this case because parasites need hosts
in order to reproduce.

P0

t

P (t )

Figure 3: Evolution of parasites in the absence of hosts

3.2.2 In the presence of hosts

In section 3.1.2 we found that the number of eggs laid within a time interval dt is r HP . This is equal to
the newly-born individuals that contribute to the parasite population in that time interval. Therefore,
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this is the quantity that should be added to the derivative of the parasite population in equation (4).
We obtain

dP

dt
=−dP P + r HP (6)

3.3. The system of equations

Combining equations (3) and (6) altogether we obtain a non-linear coupled system of differential
equations known in mathematics as the Lotka-Volterra system. It is nonlinear, because it contains
unknowns to the power of 2 (in the products HP ) and it is coupled, because both derivatives depend
on both populations.

Renaming the two populations as x (hosts) and y (parasites) and the constants conveniently, the
system can be written as 

dx

dt
=αx −βx y

dy

dt
=−γy +δx y

(7)

where 

x = H
y = P
α= b −d
β= k
γ= dP

δ= r

In the current section we will discuss a series of mathematical methods that allow us to visualise
the evolution of the two populations in time, as described by the Lotka-Volterra system of equations.

3.3.1 Vector fields

Since the evolution of the two populations is described by equations depending only on their sizes at
a certain moment in time, and not on the time moment, we can conclude that being given a pair of
population sizes (x, y), from then on, they will always evolve in the same manner, no mater when that
pair of populations happens to exist. Therefore, instead of representing the two populations against
time separately, we can eliminate time and represent the two populations against each other.

To each pair of current populaton sizes (x, y), a vector can be assigned, indicating the direction
in which the populations will evolve from then on. The vector’s horizontal and vertical components
are equal to the derivatives of the two populations and can therefore be calculated using the Lotka-
Volterra system. The vector’s modulus, equal to

√
(dx/dt )2 + (dy/dt )2, shows how "fast" the popula-

tion sizes are changing. Such a representation is called vector field.
Obviously, the shape of the vector field depends on the four parameters α, β, γ, δ. It does not

depend, however, on the initial population sizes, since any point in the plane can play the role of a
starting point.

Figure 4 shows the vector field for chosen parameters of α = 0.02, β = 0.004, γ = 0.06, δ = 0.008.
The field looks as we expected: if we go on the horizontal axis, those are points that correspond to
hosts in absence of parasites (case that has been studied in subsection 3.1.1). And because we chose
α > 0 ⇐⇒ b > d , the hosts grow exponentially and parasites remain to 0 (all vectors are overlapped
with the horizontal axis). Similarly, if we go on the vertical axis we are in the case of parasites in
absence of hosts (subsection 3.2.1), with parasite population decreasing exponentially to 0.
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x

y

15

9

Figure 4: Vector field

As an example we chose the vector at point (15,9), meaning that we have current populations of
15 hosts and 9 parasites. The evolution of the populations one unit in time afterwards is described by
the vector v⃗ , drawn green here. Its horizontal component equals

|v⃗x | = dx

dt
=αx −βx y = 0.02 ·15−0.004 ·15 ·9 =−0.24

and its vertical component equals

|v⃗y | = dy

dt
=−γy +δx y =−0.06 ·9+0.008 ·15 ·9 = 0.54

This means that after a time unit dt , we will have 14.76 hosts and 9.54 parasites.

Observation The reader may be confused by the non-integer value of the number of individuals,
but since it is mathematically correct, it does not matter. The values of H(t ) and P (t ) may represent,
for instance, hundreds or thousand of individuals (3).

3.3.2 Stationary points

It would be interesting to find out whether there exist populations that can co-exist in such an equi-
librium with each other that their sizes don’t change in time at all, remaining constant. This would be
such a state, so that the number of hosts infested by parasites compensates their natural growth and
the parasites born equal their natural death rate.

Because once entering in such a state of equilibrium, the populations won’t leave it, these points
are called stationary points.
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To find these points, having in mind that the populations remain constant, it means that we
should set both derivatives to zero

dx
dt = 0

dy
dt = 0

(7)⇐⇒


αx −βx y = 0

−γy +δx y = 0

The system has the solutions

(0,0),

(
γ

δ
,
α

β

)
which are represented in blue on the vector field in Figure 5.

x

y

γ/δ

α/β

Figure 5: Stationary points

It is obvious that if both populations are zero they will remain zero. There is, however, the second
point, which is of interest to us, a point with both populations non-zero. As of the definition of the
vector field, to these points null vectors are assigned. As we can see, all other vectors rotate counter-
clockwise around the second stationary point (4).

3.3.3 Discretisation

A method that can yield good numerical values, showing us how the populations evolve given an
initial state (x, y) is the discretisation. We can turn the functions into sequences.

By doing that, the magnitude of a derivative becomes the difference between two consecutive
terms. We can therefore calculate the populations step by step using the formula

(7) =⇒


xn+1 −xn =αxn −βxn yn

yn+1 − yn =−γyn +δxn yn

⇐⇒


xn+1 = xn(1+α−βyn)

yn+1 = yn(1−γ+δxn)
(8)

Writing a software that uses the discretisation formulas (8) we were able to see how the popula-
tions evolve in time, from a starting pair (x, y). The software generates the population sizes within
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timeInterval time units. If any of the two reach zero or exceed an upper limit of maxSize, the
execution ends.

1 for i in range(timeInterval):
2 hnew = h * (1 + alpha - (beta * p))
3 pnew = p * (1 - gamma + (delta * h))
4 if(hnew > maxSize or pnew > maxSize):
5 outputFile.write(’Value exceeding upper limit\n’)
6 br eak
7 if(hnew <= 0):
8 outputFile.write(’Hosts population died\n’)
9 break

10 if(pnew <= 0):
11 outputFile.write(’Parasite population died\n’)
12 break
13 h = hnew
14 p = pnew
15 outputFile.write(str(h) + ’, ’ + str(p) + ’\n’)

The data that is generated by the code can be represented as a path directly on the vector field
(Figure 6). As expected, the path obeys the vector field, being tangent to the vectors in all points it
passes through.

x

y

Figure 6: The path followed by the populations for initial pair (15,9) and parameters α = 0.02, β =
0.004, γ= 0.06, δ= 0.008

It is worth noting, however, that this is only an approximate method, and the path generated is
close but not identical with the real path, because it is calculated discretely, with evaluation of the
derivatives at certain time intervals. For the real path to be generated, the derivatives would need to
be calculated at infinitesimally small time intervals.

To check that, we can adapt the discretisation method to reduce the time interval between two
calculations (let’s say, not every day of our ecosystem, but every hour or minute). What needs to be
changed in our calculation method to provide that?

We will take the Lotka-Volterra system again, but this time we will consider a time interval of f dt
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instead of dt , with f ∈ (0,1). The rewritten Lotka-Volterra system is equivalent with (5)
dx

f dt
=αx −βx y

dy

f dt
=−γy +δx y

⇐⇒


dx

dt
= f αx − f βx y

dy

dt
=− f γy + f δx y

⇐⇒


dx

dt
= ( f α)x − ( f β)x y

dy

dt
=−( f γ)y + ( f δ)x y

(9)

System (9) indicates that if we want to calculate the populations f −1 times more often we have to
multiply each parameter α, β, γ, δ by our chosen factor f . Figure 7 shows the path obtained using
our software for factors 0.5 and 0.2. As we can see, as f decreases, the path approaches a closed path.

x

y

a) f = 0.5

x

y

b) f = 0.2

Figure 7: Making discretisation at smaller time intervals

Is it possible that, at the limit for f → 0 (the real case), this path is a closed path? This observation is
discussed in the next subsection.

3.4. The prime integral of the system

In order to obtain the mathematical expression of the path we observe that we can apply the separa-
tion of variables method in the Lotka-Volterra system (6).

dy

dx
= dy

dt
· dt

dx
= y ′

x ′
(7)= −γy +δx y

αx −βx y
= y(−γ+δx)

x(α−βy)
⇐⇒ α−βy

y
dy = −γ+δx

x
dx (10)

Integrating expression (10) gives

α

∫
dy

y
−β

∫
dy =−y

∫
dx

x
+δ

∫
dx

α ln y −βy =−γ ln x +δx +C

α ln y −βy +γ ln x −δx −C = 0 (11)
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Equation (11) represents the mathematical equation of the path the two populations follow in
time, where C is a constant that depends on the initial conditions. Since the equality is obeyed at any
moment, even at the initial one, C can be written depending on H0 and P0 as

C =α lnP0 −βP0 +γ ln H0 −δH0

Figure 8 illustrates the characteristic path the two populations follow in time depending on their
initial sizes.

3.4 The prime integral of the system

In order to obtain the mathematical expression of the path we observe that we can apply the separa-
tion of variables method in the Lotka-Volterra system.

dy
dx

= dy
dt

· dt
dx

= y ′

x ′
(9)= −γy +δx y

αx −βx y
= y(−γ+δx)

x(α−βy)
⇐⇒ α−βy

y
dy = −γ+δx

x
dx (14)

Integrating expression (14) gives

α

∫
dy
y

−β

∫
dy =−y

∫
dx
x

+δ

∫
dx

α ln y −βy =−γ ln x +δx +C

α ln y −βy +γ ln x −δx −C = 0 (15)

Equation (15) represents the mathematical equation of the path the two populations follow in
time, where C is a constant that depends on the initial conditions. Since the equality is obeyed at any
moment, even at the initial one, C can be written depending on H0 and P0 as

C =α lnP0 −βP0 +γ ln H0 −δH0

Figure 8 illustrates the characteristic path the two populations follow in time depending on their
initial sizes.

4 8 12

4

8

12

(
γ
δ , αβ

)

x

y

H0 = 12, P0 = 8 ⇒C ≃ 0.07
H0 = 10, P0 = 6 ⇒C ≃ 0.0627

Figure 8: Curves describing the evolution of hosts and parasites in time using the prime integral of
the system

4 Conclusion

We are aware of the fact that the field of differential equations is a fairly vast field, our research topic
approaching only a narrow part of it. Although our high-school knowledge did not enable us to give
a complete and comprehensive solution to the problem of competing species, we hope that our work
represents a satisfying insight into this field, especially for the younger ones.
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Figure 8: Curves describing the evolution of hosts and parasites in time using the prime integral of
the system

4. Conclusion

We are aware of the fact that the field of differential equations is a fairly vast field, our research topic
approaching only a narrow part of it. Although our high-school knowledge did not enable us to give
a complete and comprehensive solution to the problem of competing species, we hope that our work
represents a satisfying insight into this field, especially for the younger ones.
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Editing Notes

(1) This can be compared with the formula (5) found for the evolution of parasites in the absence
of hosts. Here, the mortality rate is equal to dp only if c = 0.

(2) This is the simplest model. There are more complex models that take into account resource
limitations.

(3) We can say that if H and P are large enough, treating them as derivable functions is a mathe-
matically correct approximation.

(4) There is a big difference between these two stationary points. A point close to (0,0) will move
far away (unless it is on the y-axis), so there is no stability, while on the contrary a point close to
the other stationary point stays close to it.

(5) Formally, in the equations below, x and y are replaced by the functions t 7→ x( f t ) and y 7→ y( f t ).

(6) A first observation is that eliminating time from equations (7) yields a differential equation link-
ing x and y as the system evolves, so that each trajectory

{
(x(t ), y(t )); t ≥ 0

}
remains on some given

solution of this equation.
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